
Deep Dive: AI

Today, let's take a closer look at just one part of one system: our AI.

AI is a big challenge for a game like Stonehearth. In the screen here, you can see that 
at lunchtime, everyone eats at the same time. This involves looking for food to eat, 
picking it up, finding somewhere to sit, and then eating the food. Also, repeating this 
until the person stops being hungry. Can you think why this might be complicated?

Right, so because SH is a town-level game, all the people in the town need to do 
things, and each of their tasks must be broken down such that all possible points of 
overlap and contact are coordinated. For example, two people can't sit in the same 
chair, or eat the same food. 



Deep Dive: AI - Movie + Dinner

Let’s do a Real Life example to illustrate the complexity. This is actually the real-life 
example we used when we were working out how to make the AI system. Let's say 
that you want to go see a movie and then also get dinner somewhere nearby, 
beforehand. What sorts of things do you have to do, in order to accomplish this task? 



Deep Dive: AI - Movie + Dinner

● pick movie 
● pick restaurant nearby
● buy tickets 
● make reservations
● drive to restaurant
● eat
● drive to show
● watch show
● drive home

Right, so first before you go see the movie, you have to pick the movie. Based on the 
movie you pick, that narrows down the possible theaters you can go to and the times 
that you'll be seeing it. This in turn narrows down the restaurants available to you. 
You pick a restaurant based on these constraints. Then comes the verification step: 
can you in fact, in advance, through your phone, buy tickets for this movie, and make 
reservations for the restaurant? If you can neither buy tickets or get a reservation, you 
may have to redo one or both of the picking steps--either pick a different movie or pick 
a different restaurant. Many permutations. 

Once you have decided on the movie and restaurant, you can then execute your 
evening--drive to the restaurant, eat, drive to the movie, watch it, and go home. 



Deep Dive: AI - Action Stages

● pick movie 
● pick restaurant nearby 
● buy tickets 
● make reservations
● drive to restaurant
● eat
● drive to show
● watch show
● drive home

Planning

Acting

Cleanup

This breakdown means that there are 3 distinctly different parts to the activities 
involved in this movie+restaurant activity: the planning, part, the acting part, and the 
cleanup/resetting state part. This breakdown is useful because it lets us isolate the 
planning form the acting, so that we don't have to get halfway through the evening, 
and then change plans. If this were a program, an AI, we could write it down just like 
this, where each action is a function, and call it a day right? 



Deep Dive: AI - Action Individuality

● pick movie 
●
● buy tickets 
●
●
●
● drive to show
● watch show
●

Movie
●
● pick restaurant nearby 
●
● make reservations
● drive to restaurant
● eat
●
●
●

Restaurant
●
●
●
●
●
●
●
● drive home

Return

Well, yes we could, but planning/action isn’t the only way to divide up the steps. 
Here… you can see that this is another way we’d divide up/categorize the steps. We 
can also separate everything involved with the movie, from everything involved with 
the restaurant, from everything involved with the driving home. Can anyone think 
which might be better/more useful and why? 

Well, as any good engineer knows, you also usually want to write your code in such a 
way that like-functions/behaviors stay together, so that you can re-use your code. 
What if I wanted to write an AI in which I visited only a restaurant, or only went to a 
movie? What if I wanted to write it so that I went to a restaurant and then ice skating? 
Dividing the actions up this way would allow me to do that, at the expense of having 
actions that can be easily interleaved and dependent on each other. 

So what's the solution? How do I get interdependence but also re-usabiity? 



Deep Dive: AI - Nest Like-Units
● do movie + dinner 

○ pick movie
○ eat dinner nearby (input: location [of movie]) 

■ find nearby restaurant
■ reserve restaurant
■ go to restaurant
■ eat

○ watch movie (input: current location, movie)
■ buy tickets
■ go to movie
■ watch movie

● drive home

Solution: nest like units, so that the primary action is movie + dinner, and then inside 
that action there is a dinner section, and a movie section… each of which takes as 
inputs, the outcome of the planning session before. 



Deep Dive: AI - Run Planning First
● do movie + dinner 

○ pick movie
○ eat dinner nearby (input: location [of movie]) 

■ find nearby restaurant
■ reserve restaurant
■ go to restaurant
■ eat

○ watch movie (input: current location, movie)
■ buy tickets
■ go to movie
■ watch movie

● drive home

Then run all the planning actions first and in order. If any fail, start the whole stack 
again. So first: pick a movie. Use this as input to the "find nearby restaurant." Given a 
restaurant, then then do "reserve restaurant". If reserve fails, start that unit over, 
meaning, find another restaurant. If the unit fails, then find another movie. If the 
reserve succeeds, go to "buy tickets". Ïf buy tickets fails, start the stack over, 
meaning, find another movie. 



Deep Dive: AI - Then All Acting
● do movie + dinner 

○ pick movie
○ eat dinner nearby (input: location [of movie]) 

■ find nearby restaurant
■ reserve restaurant
■ go to restaurant
■ eat

○ watch movie (input: current location, movie)
■ buy tickets
■ go to movie
■ watch movie

● drive home

Then, only if all the planning stages succeed, do you do all the execution actions in 
order. But you know these won't fail, because the reservations/tickets are already 
there for you. 



Deep Dive: AI - Remix
● do dancing + dinner ()

○ pick club
○ eat dinner nearby (input: location [of club]) 

■ find nearby restaurant
■ reserve restaurant
■ go to restaurant
■ eat

○ go dancing (input: current location, club)
● drive home

This way you can remix things--if you want to reuse the eat dinner action to do dinner 
+ dancing, you don’t have to write an all-new function, you just have to write the 
dancing part. Win!



Deep Dive: AI - In the game

And this is what it looks like in the game. The dev version of the game has an AI 
inspector showing all the things that could be running on a person at a given time. 

At the top you can see that though the person hungry, she’s running idle->despair 
(current actions are in green) because simultaneously, she’s trying to run eat, but it’s 
getting stuck in the thinking/planning part: she can’t find any food to pick up. Since 
she can’t find any food in follow path, she can’t reserve it and the running to the food 
will never happen. 
--
(It’s a little hard to read because vertical alignment means both ‘peer actions--all the 
equivalent things I could be doing’, and sequential actions within an action, or all the 
things I need to do to make this happen, but let’s just focus on one action at a time.)



Deep Dive: AI - In the game, working

Once there is food in the world, she is able to locate and reserve it, and the planning 
section (thinking section) finishes, allowing the eating action to actually run. (In our 
dinner/movie analogy, she’s found the tickets and the reservation and is now 
eating/watching the movie.) The green means that the planning stage for the actions 
mentioned action have succeeded, and the AI can progress. 

As you can see, actions have an incredibly fine amount of detail. The reason I used 
the dinner/movie analogy is because it is ONLY at an hour-long activity level that 
humans start to think that we need to break our behavior down, and plan everything in 
advance. We actually do the same when we’re trying to get a seat at a buffet, but it’s 
a much more automatic process. In Stonehearth, however, and all similar kinds of 
programming problems, the AI has to handle each little interaction as if each were a 
big deal. 


